Modeling, Data Assimilation and Advanced Computing

Mark Govett

Advanced Computing

NOAA HPC Resources and where Boulder fits

- System supports OAR science activities
 - Tolerates lower reliability
 - Better price-performance
- Proving ground for new technologies
 - Computer systems
 - Mass Storage
 - Networking
 - File systems

Computer Systems

Cost effective, cutting-edge, innovative

- 1992: Purchased NOAA's first Massively Parallel Processor (MPP) super-computer
 - Low-cost alternative to expensive vector machines
- 2000: First NOAA Linux cluster
 - Used <u>Commercial Off-The-Shelf technology</u> (COTS)
 - 8th fastest computer (2002: TOP500 list)
- 2008: Began exploring the use of Graphics Processing Units (GPUs)

MPP System (1992)

Linux Cluster (2000)

PetaFlop Computing

- Required for global cloud resolving scales (3-4km)
 - Large CPU systems (~200 thousand cores) are unrealistic for operational weather forecasting
 - Power, cooling, reliability, cost
- CPU chip performance flat
- GPUs appear to be the future of HPC

Fermi (2010)

- ♦ 8x increase in double precision
- ♦ Error correcting memory

933Gflops

150W

Software Development

from Vector to MPPs (1990s)

- Developed the Scalable Modeling System (SMS)
 - Directive-based code parallelization
 - Handle inter-process communications, I/O
 - Distributed memory paradigm
 - Demonstrated good performance and portability

Outcomes

- Demonstrated MPPs were a cost-effective technology
- Led to NCEP moving away from expensive vector machines

Cray XMP Cost: \$20-40M

Intel Paragon (1992) Cost: \$1M

Software Development

from MPPs to Linux Clusters (2000s)

- Worked with vendors to develop software infrastructure
 - Node management, file systems, batch systems

Outcomes

- Demonstrated Linux clusters could be assembled and managed at a huge cost savings
 - enables more science at Boulder facility
 - HRRR using 900 CPUs for hourly cycled runs
- Many large research systems are now Linux clusters

TACC Ranger (2008)
Linux Cluster
62,976 CPU cores
579 TFlops peak

IBM Cluster (2008) Vendor Solution

Linux Cluster (2008)

COTS Solution 2-5 times cheaper

Software Development

from CPUs to GPUs (2010s)

- Purchased 16 node GPU system in 2008
- Developed Fortran to CUDA compiler
 - Commercial compilers now available
- Parallelized all of NIM dynamics
 - Runs 34 times faster on a GPU than CPU
 - Single GPU, Communications only for I/O

Current Efforts

- Run NIM dynamics on multiple GPU nodes
- Parallelize FIM, HYCOM, GFS physics for GPU

Outcomes

- Public release of Fortran-GPU compiler
 - Noted on NVIDIA site, technical papers
 - Downloads worldwide

Models

Models & Ensembles Software Investment

- Models are becoming increasingly complex
 - Increasing emphasis on sharing models, components
- Portability & performance important to NOAA
 - 2008 GSD port of FIM to TACC took 3 days (HFIP)
- Interoperability
 - Global Interoperability Program (GIP)

E N **HYCOM** S Portability SMS performance physics WRF E M **GFS** dynamics В Interoperability **FIM** chemistry E **NIM**

NOAA systems

NCEP Operations

> GFDL R&D

NCEP R&D

Boulder R&D

DOE Oak Ridge

NSF TACC

Final Thoughts

- GSD plays a vital role for NOAA in Advanced Computing
 - Support OAR science with low-cost, high-performance, cutting-edge systems
 - Continue to provide leadership in HPC
 - Exploring new hardware technologies
 - Developing support tools
 - Enhancing model portability, performance and interoperability
 - These activities continue to be very beneficial for NOAA and the wider community

